Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization.
نویسندگان
چکیده
The interactions of the ECM (extracellular matrix) protein asporin with ECM components have previously not been investigated. Here, we show that asporin binds collagen type I. This binding is inhibited by recombinant asporin fragment LRR (leucine-rich repeat) 10-12 and by full-length decorin, but not by biglycan. We demonstrate that the polyaspartate domain binds calcium and regulates hydroxyapatite formation in vitro. In the presence of asporin, the number of collagen nodules, and mRNA of osteoblastic markers Osterix and Runx2, were increased. Moreover, decorin or the collagen-binding asporin fragment LRR 10-12 inhibited the pro-osteoblastic activity of full-length asporin. Our results suggest that asporin and decorin compete for binding to collagen and that the polyaspartate in asporin directly regulates collagen mineralization. Therefore asporin has a role in osteoblast-driven collagen biomineralization activity. We also show that asporin can be expressed in Escherichia coli (Rosetta-gami) with correctly positioned cysteine bridges, and a similar system can possibly be used for the expression of other SLRPs (small LRR proteoglycans/proteins).
منابع مشابه
Osteoblast Differentiation on Collagen Scaffold with Immobilized Alkaline Phosphatase
Background In tissue engineering, scaffold characteristics play an important role in the biological interactions between cells and the scaffold. Cell adhesion, proliferation, and activation depend on material properties used for the fabrication of scaffolds. Objective In the present investigation, we used collagen with proper characteristics including mechanically stability, biodegradability ...
متن کاملIdentification and characterization of a novel interaction between pulmonary surfactant protein D and decorin.
Surfactant-associated protein D (SP-D) is a collectin that is present in lung surfactant and mucosal surfaces. Although SP-D regulates diverse functions, only a few proteins are known to bind to this collectin. Here we describe the co-purification of decorin, a novel SP-D-binding protein, from amniotic fluid. The human decorin that co-purified with SP-D is a 130-150-kDa proteoglycan, which has ...
متن کاملCollagen XXIV (Col24α1) Promotes Osteoblastic Differentiation and Mineralization through TGF-β/Smads Signaling Pathway
Collagen XXIV (Col24α1) is a recently discovered fibrillar collagen. It is known that mouse Col24α1 is predominantly expressed in the forming skeleton of the mouse embryo, as well as in the trabecular bone and periosteum of the newborn mouse. However, the role and mechanism of Col24α1 in osteoblast differentiation and mineralization remains unclear. By analyzing the expression pattern of Col24α...
متن کاملAsporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure
The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs). Not all SLRPs' effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the in...
متن کاملThe decorin sequence SYIRIADTNIT binds collagen type I.
Decorin belongs to the small leucine-rich repeat proteoglycan family, interacts with fibrillar collagens, and regulates the assembly, structure, and biomechanical properties of connective tissues. The decorin-collagen type I-binding region is located in leucine-rich repeats 5-6. Site-directed mutagenesis of this 54-residue-long collagen-binding sequence identifies Arg-207 and Asp-210 in leucine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 423 1 شماره
صفحات -
تاریخ انتشار 2009